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ABSTRACT 

The Indian Space Research Organisation (ISRO) has been a pioneer in space exploration since its 

establishment in 1969. Over the decades, it has developed numerous satellite missions that have 

significantly contributed to various fields, including communication, earth observation, and 

navigation. Historically, predicting the expected lifetime of satellites has relied on extensive empirical 

data and expert assessments. ISRO has continuously innovated, transitioning from traditional methods 

to more sophisticated approaches, integrating advances in technology and science.The objective of 

this research is to leverage machine learning techniques to model and predict the expected lifetime of 

satellites in ISRO's space missions. By utilizing historical data and advanced analytics, the goal is to 

enhance the accuracy of lifetime predictions, thereby improving mission planning, resource 

allocation, and operational efficiency. Before the advent of machine learning, traditional methods for 

predicting satellite lifetime typically involved empirical models based on historical performance data, 

physical failure models relying on component testing, and expert evaluations through qualitative 

assessments. These methods often lacked the ability to efficiently analyze large datasets and were 

limited in their predictive capabilities.The traditional methods for estimating satellite lifetime at ISRO 

are often time-consuming, reliant on expert knowledge, and limited by the availability of historical 

data, leading to inaccuracies in lifetime predictions and inefficient resource management during 

missions.The proposed system involves collecting extensive datasets from past ISRO satellite 

missions, including operational data, environmental factors, and component performance metrics. 

This data will be pre-processed and analyzed to identify patterns and correlations. A series of 

predictive models will be developed to estimate satellite lifetimes, incorporating various features such 

as launch conditions, operational anomalies, and degradation trends. The system will also include 

visualization tools to present insights and predictions in a user-frsiendly manner for mission planners. 

Keywords: Satellite Lifetime Prediction, Machine Learning, ISRO, Space Missions, Predictive 

Modeling, Operational Efficiency 

1. INTRODUCTION 

The Indian Space Research Organisation (ISRO) has established itself as a major player in global 

space exploration. Since its founding in 1969, ISRO has launched numerous satellite missions that 

have revolutionized fields such as communications, earth observation, meteorology, navigation, and 

scientific research. Some of ISRO's most significant missions include the Mars Orbiter Mission 

(Mangalyaan), Chandrayaan lunar missions, and the launch of the Polar Satellite Launch Vehicle 

(PSLV). With over 300 satellites launched and partnerships with multiple countries, ISRO has built a 

reputation for cost-effective and efficient space exploration. Predicting the lifespan of satellites has 

traditionally relied on expert judgment and empirical data. However, as satellite technology advances, 

the need for more precise predictions is growing. Machine learning offers an opportunity to enhance 

these predictions by analyzing large datasets to model and predict satellite lifetimes with greater 
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accuracy. Applications of such a model include mission planning, risk management, and optimization 

of satellite resources to ensure maximum operational efficiency. Before the integration of machine 

learning techniques, predicting the lifetime of satellites involved using traditional methods, such as 

empirical models based on historical performance data and expert evaluations. These methods, while 

useful, often struggled with scalability and lacked precision. For instance, failure models depended 

heavily on physical testing of components and extrapolating results based on small sample sizes. In 

addition, expert assessments, while valuable, were subjective and often limited by human bias and the 

availability of historical data. These methods were time-consuming, error-prone, and often unable to 

capture complex relationships between operational data and satellite degradation patterns. The 

inability to analyze large datasets efficiently led to inaccuracies in lifetime predictions, which could, 

in turn, affect resource allocation, mission planning, and satellite operations. 

2. LITERATURE SURVEY 

Williams and Bell [1] analyzed the Chang’e 5 mission, discussing its objectives, lunar sampling 

techniques, and technological innovations. They examined the spacecraft’s performance and mission 

outcomes in the context of China’s lunar exploration program. Dunbar [2] presented an overview of 

NASA’s Artemis program, focusing on its objectives, planned lunar missions, and technological 

advancements. The study highlighted Artemis’ role in future lunar exploration and its significance in 

human spaceflight. Dobrijevic [3] provided a comprehensive guide to NASA’s DART mission, 

explaining its purpose, execution, and impact on planetary defense strategies. The study discussed 

how the mission tested kinetic impact technology for asteroid deflection. Williams and Bell [4] 

described Chandrayaan 3, outlining its scientific objectives, technological advancements, and 

expected contributions to lunar exploration. The mission aimed to improve India’s lunar research 

capabilities. Williams and Bell [5] examined the Luna 25 mission, detailing its goals, spacecraft 

design, and expected contributions to Russia’s lunar exploration efforts. The study explored its 

significance in the country’s space ambitions. Ebeling [6] introduced fundamental concepts of 

reliability and maintainability engineering, discussing various analytical techniques for assessing 

system performance and longevity. The book emphasized the importance of reliability in engineering 

design. Huangpeng et al. [7] proposed a methodology for determining the optimal sample size for 

launch vehicle reliability analysis. They utilized Sequential Probability Ratio Test (SPOT) and 

Bayesian recursive estimation to improve the accuracy of reliability predictions. Their study aimed to 

enhance launch vehicle assessment through statistical modeling. Krevor and Wilhite [8] introduced a 

framework for estimating the cost of improving launch vehicle reliability. They analyzed cost trade-

offs associated with enhancing reliability and presented a model to optimize investment in failure 

prevention measures. Their findings contributed to cost-effective launch vehicle development 

strategies. Guarro [9] conducted an in-depth assessment of space launch vehicle reliability, evaluating 

various statistical methods for estimating failure probabilities. His study highlighted the challenges in 

predicting launch success and emphasized the importance of historical data analysis in improving 

launch outcomes. Guikema and Paté-Cornell [10] applied Bayesian analysis to assess launch vehicle 

success rates, integrating historical data with probabilistic models. Their research demonstrated how 

Bayesian updating can improve predictions of launch reliability and reduce uncertainty in failure 

assessments. Guikema and Paté-Cornell [11] investigated the probability of infancy-related failures in 

space launch vehicles, emphasizing the role of early-life performance in determining overall 

reliability. They found that launch vehicles often exhibit higher failure rates in initial flights before 

stabilizing in performance. Castet and Saleh [12] analyzed satellite reliability using statistical 

methods, comparing various reliability estimation techniques. Their study provided insights into the 
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failure rates of different satellite classes and contributed to the understanding of satellite longevity in 

space missions. 

Castet and Saleh [13] extended their analysis to satellite subsystems, examining reliability trends and 

identifying common failure modes. They proposed a statistical modeling approach to improve 

reliability predictions for complex satellite architectures. Grile and Bettinger [14] estimated the 

reliability of satellites launched between 1991 and 2020 using statistical methods. They identified 

trends in satellite failures over time and provided an analysis of factors affecting satellite longevity in 

orbit. Dubos et al. [15] explored the relationship between satellite mass and reliability, analyzing 

whether spacecraft size influences failure rates. Their findings suggested that larger satellites tend to 

have higher reliability, potentially due to more robust design and testing procedures.  

3.PROPOSED SYSTEM 

Step 1: Satellite Lifetime Dataset: The first step involves obtaining the satellite lifetime dataset, 

which contains various features related to satellite characteristics and their expected lifetime in space 

missions. This dataset is crucial for training and testing machine learning models aimed at predicting 

satellite lifespan. It is typically a CSV file that includes features such as satellite name, launch details, 

orbit type, dry mass, power capacity, and expected lifetime in years. 

Step 2: Data Preprocessing: The next step is to preprocess the data for use in machine learning 

models. This includes handling missing data by filling in the missing values for certain features like 

"Dry Mass (kg.)" and "Power (watts)" using the mean of the respective columns. Date columns such 

as "Date of Launch" are converted into datetime format, and additional columns like "Day", "Month", 

and "Year" are extracted from the launch date. The dataset is then rescaled using StandardScaler to 

ensure all features are on a similar scale, and categorical features are encoded using LabelEncoder. 

The data is split into training and test sets for model evaluation. 

Step 3: Exploratory Data Analysis (EDA) Plots: In this step, various exploratory data analysis 

(EDA) plots are generated to better understand the dataset. Histograms of the features and the target 

variable "Expected Lifetime (yrs.)" are created to visualize distributions. A correlation heatmap is also 

generated to identify potential relationships between features, which may help in model selection and 

refinement. 

Step 4: Existing Ridge Regressor Algorithm: The Ridge Regressor algorithm is applied to the 

preprocessed data as one of the traditional machine learning models for regression. The Ridge model 

is trained using the training data and evaluated using the test data. The performance of the model is 

then assessed through regression metrics such as Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and R-squared (R²). If a pre-trained model exists, it is 

loaded from disk to predict the satellite lifetime on new data. 

Step 5: Existing Linear Regressor Algorithm: Similar to Ridge Regressor, the Linear Regression 

model is applied to the data to test its performance. The Linear Regressor is trained on the same 

training data, and predictions are made for the test set. The model’s performance is then evaluated 

using the same set of regression metrics. As with Ridge Regressor, if a pre-trained model exists, it is 

loaded to predict on new test data. 

Step 6: Proposed LSTM Regressor Algorithm: A more advanced approach is implemented using 

Long Short-Term Memory (LSTM) networks, which are a type of recurrent neural network (RNN) 

well-suited for sequential data. In this step, the data is reshaped to be compatible with the LSTM 

architecture. The LSTM model is either trained from scratch or loaded if pre-trained. This model is 
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then used to predict the expected satellite lifetime, and performance is evaluated using the same 

regression metrics as the traditional models. 

Step 7: Performance Comparison Graph: A comparison graph is generated to visualize the 

performance of all three models—Ridge Regressor, Linear Regressor, and LSTM Regressor. The 

graph displays the performance metrics such as MAE, MSE, RMSE, and R² score for each model, 

allowing for an easy comparison of their accuracy and reliability in predicting satellite lifetimes. This 

helps in identifying which algorithm performs best. 

Step 8: Prediction of Output from Test Images with LSTM Regressor Algorithm 

Finally, the trained LSTM model is used to make predictions on new test data. The test data is 

preprocessed in the same way as the training data, ensuring consistency. Once the data is prepared, the 

LSTM model predicts the expected satellite lifetime, and the results are displayed. A plot is generated 

to visualize the predicted lifetimes across different test samples. This step concludes the research, 

where the model's ability to predict real-world satellite lifetimes is demonstrated. 

 

Fig.1: Architectural block diagram of proposed system. 

3.2 Data Preprocessing and Data Splitting 

Data preprocessing is a critical step in preparing the dataset for model training. In this research, the 

dataset is primarily composed of satellite-related features that are used to predict the expected lifetime 

of satellites. The process involves several key tasks: 

1. Date and Time Feature Engineering: 

o The dataset contains a column titled "Date of Launch", which represents the launch 

date of the satellite. This feature is converted to a datetime format using 

pd.to_datetime(). 

o After conversion, several date components are extracted, such as Day, Month, and 

Year, to make the information more usable for the model. These components are 

stored as separate columns and the original "Date of Launch" column is dropped 

since it is no longer necessary. 

2. Label Encoding of Categorical Variables: 

o The dataset also includes several categorical variables, such as satellite names, 

country, orbit type, etc. These variables need to be converted into numeric 

representations before feeding them into machine learning models. 
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o The LabelEncoder from scikit-learn is used to transform each categorical column into 

a numeric value. This is necessary because most machine learning models work with 

numerical data. All categorical columns, such as the "Name of Satellite" and "Launch 

Vehicle", are encoded in this way. 

3. Handling Missing Values: 

o Several columns in the dataset, such as "Dry Mass (kg.)", "Power (watts)", and 

"Expected Lifetime (yrs.)", may contain missing values. In this research, missing 

values in these columns are filled with the mean value of the respective column. This 

technique helps maintain data integrity without losing rows due to missing 

information. 

4. Resampling the Dataset: 

o Resampling is performed to balance the dataset and prevent biases toward any 

particular group of data. In this research, a subset of the data is resampled to generate 

additional data points (5000 in total). This helps in improving the model's 

performance by ensuring a more uniform distribution of training data. 

5. Feature Scaling: 

o Since many machine learning algorithms are sensitive to the scale of the data, the 

features are standardized using the StandardScaler. This scales the data such that it 

has a mean of 0 and a standard deviation of 1. Scaling is essential for models that rely 

on distance-based calculations, such as linear regression or neural networks. 

3.3 ML Model Building 

LSTM Regressor 

What is LSTM Regression? Long Short-Term Memory (LSTM) is a specialized type of Recurrent 

Neural Network (RNN) that is well-suited for learning from sequences of data, such as time series or 

sequential data. Unlike regular RNNs, LSTMs are capable of capturing long-range dependencies due 

to their unique architecture, which helps in solving the vanishing gradient problem faced by standard 

RNNs. 

An LSTM Regressor is a regression model that leverages the LSTM architecture to predict a 

continuous target variable. This is particularly useful when the target variable depends on sequential 

data, such as time series data, where the future values are influenced by past observations. 
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Fig 2 : LSTM flow diagram. 

How it Works: 

● LSTM uses a set of gates (input, forget, and output gates) to control the flow of information 

through the network. These gates allow LSTMs to remember information for long periods, 

making them suitable for tasks where time-dependent patterns need to be learned. 

● The architecture of an LSTM cell is designed to maintain information in memory, which 

helps the model focus on important patterns and ignore irrelevant ones. 

● The LSTM Regressor typically consists of: 

1. Input Layer: The sequence data is fed into the LSTM layers. 

2. LSTM Layers: One or more LSTM layers are used to capture temporal 

dependencies. 

3. Dense Layer: After the LSTM layers, a dense layer is used to predict the target value. 

4. Output Layer: The output layer generates the final regression prediction. 

4. RESULT AND DISCUSSION 

4.1 Dataset Description 

The dataset consists of various attributes related to satellites, with each row representing a different 

satellite. The columns have detailed information about the satellite's characteristics, operational 

parameters, and mission details. Here's a description of each column: 

⎯ Name of Satellite: The official name of the satellite, which serves as its primary identifier. 

⎯ Alternate Names: Other names or identifiers the satellite may be referred to by, possibly due 

to different naming conventions across organizations or countries. 

⎯ Current Official Name of Satellite: The most recent and officially recognized name of the 

satellite. 



www.ijbar.org 
ISSN2249-3352(P)2278-0505(E) 

CosmosImpactFactor-5.86 

 

 

 

 

IndexinCosmos 

APR2025, Volume 15,ISSUE 2 

UGCApprovedJournal 

 
 
 
 

Page | 732 

⎯ Country/Org of UN Registry: The country or organization under which the satellite is 

registered with the United Nations. This helps identify the official ownership or control of the 

satellite at an international level. 

⎯ Country of Operator/Owner: The country that operates or owns the satellite, often distinct 

from the registration country. 

⎯ Operator/Owner: The organization or agency responsible for operating and maintaining the 

satellite. This could be a government agency or private entity. 

⎯ Users: The various entities or sectors that utilize the satellite's services, which could include 

governments, research institutions, or commercial users. 

⎯ Purpose: A broad classification of the satellite’s main mission or functionality, such as 

communications, Earth observation, or navigation. 

⎯ Detailed Purpose: A more specific explanation of the satellite’s intended mission or 

objectives, providing deeper insight into the satellite's operational goals. 

⎯ Class of Orbit: The classification of the orbit the satellite is placed in, such as Low Earth 

Orbit (LEO), Medium Earth Orbit (MEO), or Geostationary Orbit (GEO). 

⎯ Type of Orbit: The exact type or path of the orbit, such as circular, elliptical, or sun-

synchronous. 

⎯ Longitude of GEO (degrees): For satellites in Geostationary Orbit, this column represents 

the longitudinal position of the satellite in relation to the Earth’s surface, measured in degrees. 

⎯ Perigee (km): The closest point in the satellite’s orbit to Earth, measured in kilometers. This 

is relevant for satellites in elliptical orbits. 

⎯ Apogee (km): The farthest point in the satellite’s orbit from Earth, measured in kilometers. 

This is relevant for satellites in elliptical orbits. 

⎯ Eccentricity: A measure of the deviation of the satellite’s orbit from a perfect circle. It 

indicates how elongated the orbit is. 

⎯ Inclination (degrees): The angle between the satellite's orbital plane and the Earth's equator, 

measured in degrees. 

⎯ Period (minutes): The time it takes for the satellite to complete one full orbit around Earth, 

measured in minutes. 

⎯ Launch Mass (kg.): The total mass of the satellite at the time of launch, measured in 

kilograms. This includes the satellite itself and any attached payloads. 

⎯ Dry Mass (kg.): The mass of the satellite without fuel or any consumables, measured in 

kilograms. 

⎯ Power (watts): The amount of electrical power the satellite generates, usually provided by 

solar panels, measured in watts. 
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⎯ Date of Launch: The exact date when the satellite was launched into space. 

⎯ Expected Lifetime (yrs.): The estimated operational lifetime of the satellite in years, based 

on factors like fuel capacity, technological lifespan, and mission design. 

⎯ Contractor: The company or organization responsible for manufacturing the satellite and 

possibly conducting initial operations. 

⎯ Country of Contractor: The country in which the contractor (satellite manufacturer) is 

based. 

⎯ Launch Site: The location from which the satellite was launched, which could include 

spaceports or launch facilities. 

⎯ Launch Vehicle: The rocket or space vehicle used to launch the satellite into orbit. 

⎯ COSPAR Number: The unique identifier assigned to the satellite by the Committee on Space 

Research (COSPAR) to track and catalog space missions. 

⎯ NORAD Number: The identification number assigned to the satellite by the North American 

Aerospace Defense Command (NORAD), used for tracking objects in space. 

4.2 Results Description 

This figure illustrates the graphical user interface (GUI) that enables the user to upload the satellite 

lifetime dataset. It displays how the dataset is loaded into the system for further analysis and 

processing. The interface provides an organized structure for selecting the dataset and triggers the 

initiation of the subsequent analysis steps. This visual emphasizes the simplicity and user-friendliness 

of the interface for users to interact with the satellite data, making it easier to proceed with 

preprocessing and model building tasks. 

 

Fig. 3: EDA Plots of the Project 

In this figure, the exploratory data analysis (EDA) plots are showcased, highlighting the relationship 

between the various features in the satellite dataset. These plots include visualizations such as 

histograms, scatter plots, and box plots that give an initial overview of the dataset's distribution, 

correlations, and potential outliers. The goal of EDA is to understand the characteristics of the dataset 
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and to identify patterns or anomalies that could influence the model-building process, helping guide 

data preprocessing decisions. 

 
Fig. 4: Data Preprocessing  

This figure presents the data preprocessing phase within the GUI interface. It visualizes the steps 

where the raw dataset is cleaned, missing values are handled, categorical data is encoded, and the 

dataset is transformed into a format suitable for machine learning models. It also highlights how 

feature scaling, such as normalization or standardization, is applied to prepare the data for better 

model performance. The preprocessing steps are displayed interactively within the interface, ensuring 

that users can track and manage each stage of data transformation. 

The performance metrics for the Ridge Regressor model are displayed in the following ways: 

● Mean Absolute Error (MAE): 1.259. This indicates the average magnitude of error in the 

model’s predictions, suggesting that on average, the model’s predictions are off by 

approximately 1.26 years. 

● Mean Squared Error (MSE): 2.356. This metric represents the squared average difference 

between the predicted and actual values, reflecting the model’s prediction accuracy. 

● Root Mean Squared Error (RMSE): 1.535. RMSE is the square root of MSE, offering an error 

metric in the same unit as the target variable, which is satellite lifetime in years. 

● R-squared (R²): 0.847. This indicates that 84.7% of the variance in satellite lifetime is 

explained by the model, suggesting a good fit to the data. 
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Fig. 4: Performance Metrics and Regression Scatter Plot of the Ridge Regressor Model 

This figure presents the performance metrics along with a regression scatter plot for the Ridge 

Regressor model. The plot visually compares the predicted values against the actual satellite lifetimes. 

The closeness of the points to the diagonal line indicates the accuracy of the predictions. The 

performance metrics provided further quantify the model's prediction accuracy, giving a clear picture 

of how well the Ridge Regressor performs. 

 

Fig. 5: Performance Metrics and Regression Scatter Plot of the Linear Regressor Model 

Similar to Fig. 5, this figure shows the performance metrics and regression scatter plot for the Linear 

Regressor model. The scatter plot highlights how the model's predicted satellite lifetimes compare to 

the actual values. The performance metrics indicate that the Linear Regressor model outperforms the 

Ridge Regressor, as seen in the lower error metrics and higher R² value. 

The performance metrics for the Linear Regressor model are: 

● Mean Absolute Error (MAE): 1.197. The predictions are off by an average of about 1.2 years, 

slightly better than the Ridge Regressor. 

● Mean Squared Error (MSE): 2.174. The squared errors for the predictions are slightly lower 

than those of the Ridge Regressor. 
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● Root Mean Squared Error (RMSE): 1.475. This value is lower than the Ridge Regressor’s 

RMSE, indicating that the Linear Regressor model performs better in terms of prediction 

accuracy. 

● R-squared (R²): 0.859. With 85.9% of variance explained, the Linear Regressor has a 

marginally better fit compared to the Ridge Regressor. 

The performance metrics for the LSTM Regressor model are: 

● Mean Absolute Error (MAE): 0.072. This indicates a very low average error in predictions, 

meaning the LSTM model predicts satellite lifetimes with high precision. 

● Mean Squared Error (MSE): 0.008. The small value of MSE suggests that the model’s 

predictions are very close to the actual values. 

● Root Mean Squared Error (RMSE): 0.089. The RMSE value is also very low, supporting the 

model’s ability to make accurate predictions. 

● R-squared (R²): 0.999. The LSTM model explains 99.9% of the variance in the satellite 

lifetime data, which indicates an excellent fit and extremely accurate predictions. 

 

Fig. 6: Performance Metrics and Regression Scatter Plot of the LSTM Regression Model 

This figure shows the performance metrics and regression scatter plot for the LSTM Regressor model. 

The regression plot illustrates how closely the model's predictions align with the actual satellite 

lifetimes, showcasing the superior performance of the LSTM model. Given the very low error metrics 

and the high R² score, this plot emphasizes the strong predictive power of the LSTM model. 
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Fig.7: Model prediction on the test data. 

Figure 7 shows the model’s predictions applied to the test dataset. It visually represents the predicted 

satellite lifetimes versus the actual lifetimes, demonstrating how accurately the model performs on 

unseen data. The test data results are essential for validating the model’s ability to generalize and 

make accurate predictions beyond the training set. 

 

Fig. 8: Performance comparison graph of all models 

Figure 8 presents a comparative graph of the performance metrics for all three models: Ridge 

Regressor, Linear Regressor, and LSTM Regressor. The graph shows how the models perform 

relative to each other in terms of MAE, MSE, RMSE, and R². It clearly illustrates that the LSTM 

model outperforms both Ridge and Linear Regression models, confirming its superior ability to 

predict satellite lifetimes accurately. 

5.CONCLUSION 

The research on predicting the expected lifetime of satellites using machine learning models aims to 

leverage satellite-related data for more accurate forecasting and analysis. By using a variety of 

features such as satellite mass, power, orbit parameters, and launch details, the research provides 

valuable insights into satellite longevity. The use of both traditional machine learning algorithms like 

Linear Regression and Ridge Regression, along with more advanced models such as LSTM 

Regressors, demonstrates the ability to handle complex data patterns and temporal dependencies in 

predicting satellite lifetimes. The successful application of these models can significantly improve 
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satellite management and space mission planning, offering benefits such as more efficient resource 

allocation, reduced costs, and optimized satellite usage for various purposes. 
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